Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
nitksam@gmail.com

Advanced Linear Algebra (MA 409)
 Problem Sheet-17
 Properties of Determinants

1. Label the following statements as true or false.
(a) If E is an elementary matrix, then $\operatorname{det}(E)= \pm 1$.
(b) For any $A, B \in M_{n \times n}(F), \operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.
(c) A matrix $M \in M_{n \times n}(F)$ is invertible if and only if $\operatorname{det}(M)=0$.
(d) A matrix $M \in M_{n \times n}(F)$ has rank n if and only if $\operatorname{det}(M) \neq 0$.
(e) For any $A \in M_{n \times n}(F), \operatorname{det}\left(A^{t}\right)=-\operatorname{det}(A)$.
(f) The determinant of a square matrix can be evaluated by cofactor expansion along any column.
(g) Every system of n linear equations in n unknowns can be solved by Cramer's rule.
(h) Let $A x=b$ be the matrix form of a system of n linear equations in n unknowns, where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$. If $\operatorname{det}(A) \neq 0$ and if M_{k} is the $n \times n$ matrix obtained from A by replacing row k of A by b^{t}, then the unique solution of $A x=b$ is

$$
x_{k}=\frac{\operatorname{det}\left(M_{k}\right)}{\operatorname{det}(A)} \quad \text { for } k=1,2, \ldots, n
$$

In Exercises 2-7, use Cramer's rule to solve the given system of linear equations.
2. $a_{11} x_{1}+a_{12} x_{2}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}=b_{2}$
where $a_{11} a_{22}-a_{12} a_{21} \neq 0$
4. $2 x_{1}+x_{2}-3 x_{3}=1$
$x_{1}-2 x_{2}+x_{3}=0$
$3 x_{1}+4 x_{2}-2 x_{3}=-5$
6. $x_{1}-x_{2}+4 x_{3}=-2$
$-8 x_{1}+3 x_{2}+x_{3}=0$
$2 x_{1}-x_{2}+x_{3}=6$
3. $2 x_{1}+x_{2}-3 x_{3}=5$
$x_{1}-2 x_{2}+x_{3}=10$
$3 x_{1}+4 x_{2}-2 x_{3}=0$
5. $x_{1}-x_{2}+4 x_{3}=-4$
$-8 x_{1}+3 x_{2}+x_{3}=8$
$2 x_{1}-x_{2}+x_{3}=0$
7. $3 x_{1}+x_{2}+x_{3}=4$
$-2 x_{1}-x_{2}=12$
$x_{1}+2 x_{2}+x_{3}=-8$
8. Prove that an upper triangular $n \times n$ matrix is invertible if and only if all its diagonal entries are nonzero.
9. A matrix $M \in M_{n \times n}(\mathbb{C})$ is called nilpotent if, for some positive integer $k, M^{k}=O$, where O is the $n \times n$ zero matrix. Prove that if M is nilpotent, then $\operatorname{det}(M)=0$.
10. A matrix $M \in M_{n \times n}(\mathbb{C})$ is called skew-symmetric if $M^{t}=-M$. Prove that if M is skewsymmetric and n is odd, then M is not invertible. What happens if n is even?
11. A matrix $Q \in M_{n \times n}(\mathbb{R})$ is called orthogonal if $Q Q^{t}=I$. Prove that if Q is orthogonal, then $\operatorname{det}(Q)= \pm 1$.
12. For $M \in M_{n \times n}(\mathbb{C})$, let \bar{M} be the matrix such that $(\bar{M})_{i j}=\overline{M_{i j}}$ for all i, j, where $\overline{M_{i j}}$ is the complex conjugate of $M_{i j}$.
(a) Prove that $\operatorname{det}(\bar{M})=\overline{\operatorname{det}(M)}$.
(b) A matrix $Q \in M_{n \times n}(\mathbb{C})$ is called unitary if $Q Q^{*}=I$, where $Q^{*}=\overline{Q^{t}}$. Prove that if Q is a unitary matrix, then $|\operatorname{det}(Q)|=1$.
13. Let $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a subset of F^{n} containing n distinct vectors, and let B be the matrix in $M_{n \times n}(F)$ having u_{j} as column j. Prove that β is a basis for F^{n} if and only if $\operatorname{det}(B) \neq 0$.
14. Prove that if $A, B \in M_{n \times n}(F)$ are similar, then $\operatorname{det}(A)=\operatorname{det}(B)$.
15. Use determinants to prove that if $A, B \in M_{n \times n}(F)$ are such that $A B=I$, then A is invertible (and hence $B=A^{-1}$).
16. Let $A, B \in M_{n \times n}(F)$ be such that $A B=-B A$. Prove that if n is odd and F is not a field of characteristic two, then A or B is not invertible.
17. Prove that if A is an elementary matrix of type 2 or type 3 , then $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.
18. A matrix $A \in M_{n \times n}(F)$ is called lower triangular if $A_{i j}=0$ for $1 \leq i<j \leq n$. Suppose that A is a lower triangular matrix. Describe $\operatorname{det}(A)$ in terms of the entries of A.
19. Suppose that $M \in M_{n \times n}(F)$ can be written in the form

$$
M=\left(\begin{array}{ll}
A & B \\
O & I
\end{array}\right),
$$

where A is a square matrix. Prove that $\operatorname{det}(M)=\operatorname{det}(A)$.
20. Prove that if $M \in M_{n \times n}(F)$ can be written in the form

$$
M=\left(\begin{array}{ll}
A & B \\
O & C
\end{array}\right),
$$

where A and C are square matrices, then $\operatorname{det}(M)=\operatorname{det}(A) \cdot \operatorname{det}(C)$.
21. Let $T: P_{n}(F) \rightarrow F^{n+1}$ be the linear transformation defined by $T(f)=\left(f\left(c_{0}\right), f\left(c_{1}\right), \ldots, f\left(c_{n}\right)\right)$, where $c_{0}, c_{1}, \ldots, c_{n}$ are distinct scalars in an infinite field F. Let β be the standard ordered basis for $P_{n}(F)$ and γ be the standard ordered basis for F^{n+1}.
(a) Show that $M=[T]_{\beta}^{\gamma}$ has the form

$$
\left(\begin{array}{ccccc}
1 & c_{0} & c_{0}^{2} & \cdots & c_{0}^{n} \\
1 & c_{1} & c_{1}^{2} & \cdots & c_{1}^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & c_{n} & c_{n}^{2} & \cdots & c_{n}^{n}
\end{array}\right) .
$$

A matrix with this form is called a Vandermonde matrix.
(b) Prove that $\operatorname{det}(M) \neq 0$.
(c) Prove that

$$
\operatorname{det}(M)=\prod_{0 \leq i<j \leq n}\left(c_{j}-c_{i}\right),
$$

the product of all terms of the form $c_{j}-c_{i}$ for $0 \leq i<j \leq n$.
22. Let $A \in M_{n \times n}(F)$ be nonzero. For any $m(1 \leq m \leq n)$, an $m \times m$ submatrix is obtained by deleting any $n-m$ rows and any $n-m$ columns of A.
(a) Let $k(1 \leq k \leq n)$ denote the largest integer such that some $k \times k$ submatrix has a nonzero determinant. Prove that $\operatorname{rank}(A)=k$.
(b) Conversely, suppose that $\operatorname{rank}(A)=k$. Prove that there exists a $k \times k$ submatrix with a nonzero determinant.
23. Let $A \in M_{n \times n}(F)$ have the form

$$
A=\left(\begin{array}{rrrlrr}
0 & 0 & 0 & \cdots & 0 & a_{0} \\
-1 & 0 & 0 & \cdots & 0 & a_{1} \\
0 & -1 & 0 & \cdots & 0 & a_{2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & a_{n-1}
\end{array}\right) .
$$

Compute $\operatorname{det}(A+t I)$, where I is the $n \times n$ identity matrix.
24. Let $c_{j k}$ denote the cofactor of the row j, column k entry of the matrix $A \in M_{n \times n}(F)$.
(a) Prove that if B is the matrix obtained from A by replacing column k by e_{j}, then $\operatorname{det}(B)=c_{j k}$.
(b) Show that for $1 \leq j \leq n$, we have

$$
A\left(\begin{array}{c}
c_{j 1} \\
c_{j 2} \\
\vdots \\
c_{j n}
\end{array}\right)=\operatorname{det}(A) \cdot e_{j} .
$$

Hint: Apply Cramer's rule to $A x=e_{j}$.
(c) Deduce that if C is the $n \times n$ matrix such that $C_{i j}=c_{j i}$, then $A C=[\operatorname{det}(A)] I$.
(d) Show that if $\operatorname{det}(A) \neq 0$, then $A^{-1}=[\operatorname{det}(A)]^{-1} C$.

The following definition is used in Exercises 26-27.
Definition. The classical adjoint of a square matrix A is the transpose of the matrix whose $i j$-entry is the $i j$-cofactor of A.
25. Find the classical adjoint of each of the following matrices.
a) $\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$
b) $\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right)$
c) $\left(\begin{array}{rrr}-4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right)$
d) $\left(\begin{array}{lll}3 & 6 & 7 \\ 0 & 4 & 8 \\ 0 & 0 & 5\end{array}\right)$
е) $\left(\begin{array}{ccc}1-i & 0 & 0 \\ 4 & 3 i & 0 \\ 2 i & 1+4 i & -1\end{array}\right)$
f) $\left(\begin{array}{rrr}7 & 1 & 4 \\ 6 & -3 & 0 \\ -3 & 5 & -2\end{array}\right)$
g) $\left(\begin{array}{rrr}-1 & 2 & 5 \\ 8 & 0 & -3 \\ 4 & 6 & 1\end{array}\right)$
h) $\left(\begin{array}{ccc}3 & 2+i & 0 \\ -1+i & 0 & i \\ 0 & 1 & 3-2 i\end{array}\right)$
26. Let C be the classical adjoint of $A \in M_{n \times n}(F)$. Prove the following statements.
(a) $\operatorname{det}(C)=[\operatorname{det}(A)]^{n-1}$.
(b) C^{t} is the classical adjoint of A^{t}.
(c) If A is an invertible upper triangular matrix, then C and A^{-1} are both upper triangular matrices.
27. Let $y_{1}, y_{2}, \ldots, y_{n}$ be linearly independent functions in C^{∞}. For each $y \in C^{\infty}$, define $T(y) \in C^{\infty}$ by

$$
[T(y)](t)=\operatorname{det}\left(\begin{array}{ccccc}
y(t) & y_{1}(t) & y_{2}(t) & \cdots & y_{n}(t) \\
y^{\prime}(t) & y_{1}^{\prime}(t) & y_{2}^{\prime}(t) & \cdots & y_{n}^{\prime}(t) \\
\vdots & \vdots & \vdots & & \vdots \\
y^{(n)}(t) & y_{1}^{(n)}(t) & y_{2}^{(n)}(t) & \cdots & y_{n}^{(n)}(t)
\end{array}\right)
$$

The preceding determinant is called the Wronskian of y, y_{1}, \ldots, y_{n}.
(a) Prove that $T: C^{\infty} \rightarrow C^{\infty}$ is a linear transformation.
(b) Prove that $N(T)$ contains $\operatorname{span}\left(\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right)$.

