Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in

nitksam@gmail.com

Advanced Linear Algebra (MA 409) Problem Sheet - 17

Properties of Determinants

- 1. Label the following statements as true or false.
 - (a) If *E* is an elementary matrix, then $det(E) = \pm 1$.
 - (b) For any $A, B \in M_{n \times n}(F)$, $det(AB) = det(A) \cdot det(B)$.
 - (c) A matrix $M \in M_{n \times n}(F)$ is invertible if and only if det(M) = 0.
 - (d) A matrix $M \in M_{n \times n}(F)$ has rank n if and only if $det(M) \neq 0$.
 - (e) For any $A \in M_{n \times n}(F)$, $det(A^t) = -det(A)$.
 - (f) The determinant of a square matrix can be evaluated by cofactor expansion along any column.
 - (g) Every system of *n* linear equations in *n* unknowns can be solved by Cramer's rule.
 - (h) Let Ax = b be the matrix form of a system of *n* linear equations in *n* unknowns, where $x = (x_1, x_2, ..., x_n)^t$. If det $(A) \neq 0$ and if M_k is the $n \times n$ matrix obtained from *A* by replacing row *k* of *A* by b^t , then the unique solution of Ax = b is

$$x_k = \frac{\det(M_k)}{\det(A)}$$
 for $k = 1, 2, \dots, n$.

In Exercises 2-7, use Cramer's rule to solve the given system of linear equations.

2.	$a_{11}x_1 + a_{12}x_2 = b_1$ $a_{21}x_1 + a_{22}x_2 = b_2$ where $a_{11}a_{22} - a_{12}a_{21} \neq 0$	3.	$2x_1 + x_2 - 3x_3 = 5$ $x_1 - 2x_2 + x_3 = 10$ $3x_1 + 4x_2 - 2x_3 = 0$
4.	$2x_1 + x_2 - 3x_3 = 1$ $x_1 - 2x_2 + x_3 = 0$ $3x_1 + 4x_2 - 2x_3 = -5$	5.	$x_1 - x_2 + 4x_3 = -4$ -8x ₁ + 3x ₂ + x ₃ = 8 2x ₁ - x ₂ + x ₃ = 0
6.	$x_1 - x_2 + 4x_3 = -2$ -8x ₁ + 3x ₂ + x ₃ = 0 2x ₁ - x ₂ + x ₃ = 6	7.	$3x_1 + x_2 + x_3 = 4-2x_1 - x_2 = 12x_1 + 2x_2 + x_3 = -8$

- 8. Prove that an upper triangular $n \times n$ matrix is invertible if and only if all its diagonal entries are nonzero.
- 9. A matrix $M \in M_{n \times n}(\mathbb{C})$ is called **nilpotent** if, for some positive integer k, $M^k = O$, where O is the $n \times n$ zero matrix. Prove that if M is nilpotent, then det(M) = 0.

- 10. A matrix $M \in M_{n \times n}(\mathbb{C})$ is called **skew-symmetric** if $M^t = -M$. Prove that if M is skew-symmetric and n is odd, then M is not invertible. What happens if n is even?
- 11. A matrix $Q \in M_{n \times n}(\mathbb{R})$ is called **orthogonal** if $QQ^t = I$. Prove that if Q is orthogonal, then $det(Q) = \pm 1$.
- 12. For $M \in M_{n \times n}(\mathbb{C})$, let \overline{M} be the matrix such that $(\overline{M})_{ij} = \overline{M_{ij}}$ for all i, j, where $\overline{M_{ij}}$ is the complex conjugate of M_{ij} .
 - (a) Prove that $det(\overline{M}) = det(M)$.
 - (b) A matrix $Q \in M_{n \times n}(\mathbb{C})$ is called **unitary** if $QQ^* = I$, where $Q^* = \overline{Q^t}$. Prove that if Q is a unitary matrix, then $|\det(Q)| = 1$.
- 13. Let $\beta = \{u_1, u_2, \dots, u_n\}$ be a subset of F^n containing *n* distinct vectors, and let *B* be the matrix in $M_{n \times n}(F)$ having u_j as column *j*. Prove that β is a basis for F^n if and only if det $(B) \neq 0$.
- 14. Prove that if $A, B \in M_{n \times n}(F)$ are similar, then det(A) = det(B).
- 15. Use determinants to prove that if $A, B \in M_{n \times n}(F)$ are such that AB = I, then A is invertible (and hence $B = A^{-1}$).
- 16. Let $A, B \in M_{n \times n}(F)$ be such that AB = -BA. Prove that if *n* is odd and *F* is not a field of characteristic two, then *A* or *B* is not invertible.
- 17. Prove that if *A* is an elementary matrix of type 2 or type 3, then $det(AB) = det(A) \cdot det(B)$.
- 18. A matrix $A \in M_{n \times n}(F)$ is called **lower triangular** if $A_{ij} = 0$ for $1 \le i < j \le n$. Suppose that A is a lower triangular matrix. Describe det(A) in terms of the entries of A.
- 19. Suppose that $M \in M_{n \times n}(F)$ can be written in the form

$$M = \begin{pmatrix} A & B \\ O & I \end{pmatrix},$$

where *A* is a square matrix. Prove that det(M) = det(A).

20. Prove that if $M \in M_{n \times n}(F)$ can be written in the form

$$M = \begin{pmatrix} A & B \\ O & C \end{pmatrix},$$

where *A* and *C* are square matrices, then $det(M) = det(A) \cdot det(C)$.

- 21. Let $T : P_n(F) \to F^{n+1}$ be the linear transformation defined by $T(f) = (f(c_0), f(c_1), \dots, f(c_n))$, where c_0, c_1, \dots, c_n are distinct scalars in an infinite field *F*. Let β be the standard ordered basis for $P_n(F)$ and γ be the standard ordered basis for F^{n+1} .
 - (a) Show that $M = [T]^{\gamma}_{\beta}$ has the form

$$egin{pmatrix} 1 & c_0 & c_0^2 & \cdots & c_0^n \ 1 & c_1 & c_1^2 & \cdots & c_1^n \ dots & dots &$$

A matrix with this form is called a **Vandermonde matrix**.

- (b) Prove that $det(M) \neq 0$.
- (c) Prove that

$$\det(M) = \prod_{0 \le i < j \le n} (c_j - c_i),$$

the product of all terms of the form $c_i - c_i$ for $0 \le i < j \le n$.

- 22. Let $A \in M_{n \times n}(F)$ be nonzero. For any m $(1 \le m \le n)$, an $m \times m$ submatrix is obtained by deleting any n m rows and any n m columns of A.
 - (a) Let $k (1 \le k \le n)$ denote the largest integer such that some $k \times k$ submatrix has a nonzero determinant. Prove that rank(A) = k.
 - (b) Conversely, suppose that rank(A) = k. Prove that there exists a $k \times k$ submatrix with a nonzero determinant.
- 23. Let $A \in M_{n \times n}(F)$ have the form

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & a_0 \\ -1 & 0 & 0 & \cdots & 0 & a_1 \\ 0 & -1 & 0 & \cdots & 0 & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & a_{n-1} \end{pmatrix}.$$

Compute det(A + tI), where *I* is the $n \times n$ identity matrix.

- 24. Let c_{ik} denote the cofactor of the row *j*, column *k* entry of the matrix $A \in M_{n \times n}(F)$.
 - (a) Prove that if *B* is the matrix obtained from *A* by replacing column *k* by e_i , then det(*B*) = c_{ik} .
 - (b) Show that for $1 \le j \le n$, we have

$$A \begin{pmatrix} c_{j1} \\ c_{j2} \\ \vdots \\ c_{jn} \end{pmatrix} = \det(A) \cdot e_j.$$

Hint: Apply Cramer's rule to $Ax = e_i$.

- (c) Deduce that if *C* is the $n \times n$ matrix such that $C_{ij} = c_{ji}$, then AC = [det(A)]I.
- (d) Show that if det(A) \neq 0, then $A^{-1} = [det(A)]^{-1}C$.

The following definition is used in Exercises 26-27.

Definition. The **classical adjoint** of a square matrix *A* is the transpose of the matrix whose *ij*-entry is the *ij*-cofactor of *A*.

25. Find the classical adjoint of each of the following matrices.

a)
$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
 b) $\begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$

c)
$$\begin{pmatrix} -4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

d) $\begin{pmatrix} 3 & 6 & 7 \\ 0 & 4 & 8 \\ 0 & 0 & 5 \end{pmatrix}$
e) $\begin{pmatrix} 1-i & 0 & 0 \\ 4 & 3i & 0 \\ 2i & 1+4i & -1 \end{pmatrix}$
f) $\begin{pmatrix} 7 & 1 & 4 \\ 6 & -3 & 0 \\ -3 & 5 & -2 \end{pmatrix}$
g) $\begin{pmatrix} -1 & 2 & 5 \\ 8 & 0 & -3 \\ 4 & 6 & 1 \end{pmatrix}$
h) $\begin{pmatrix} 3 & 2+i & 0 \\ -1+i & 0 & i \\ 0 & 1 & 3-2i \end{pmatrix}$

26. Let *C* be the classical adjoint of $A \in M_{n \times n}(F)$. Prove the following statements.

- (a) $det(C) = [det(A)]^{n-1}$.
- (b) C^t is the classical adjoint of A^t .
- (c) If A is an invertible upper triangular matrix, then C and A^{-1} are both upper triangular matrices.
- 27. Let $y_1, y_2, ..., y_n$ be linearly independent functions in C^{∞} . For each $y \in C^{\infty}$, define $T(y) \in C^{\infty}$ by

$$[T(y)](t) = \det \begin{pmatrix} y(t) & y_1(t) & y_2(t) & \cdots & y_n(t) \\ y'(t) & y'_1(t) & y'_2(t) & \cdots & y'_n(t) \\ \vdots & \vdots & \vdots & & \vdots \\ y^{(n)}(t) & y_1^{(n)}(t) & y_2^{(n)}(t) & \cdots & y_n^{(n)}(t) \end{pmatrix}.$$

The preceding determinant is called the **Wronskian** of y, y₁, ..., y_n.

- (a) Prove that $T : C^{\infty} \to C^{\infty}$ is a linear transformation.
- (b) Prove that N(T) contains $span(\{y_1, y_2, \dots, y_n\})$.
